Binding site recognition by Rns, a virulence regulator in the AraC family.

نویسندگان

  • G P Munson
  • J R Scott
چکیده

The expression of CS1 pili by enterotoxigenic strains of Escherichia coli is regulated at the transcriptional level and requires the virulence regulator Rns, a member of the AraC family of regulatory proteins. Rns binds at two separate sites upstream of Pcoo (the promoter of CS1 pilin genes), which were identified in vitro with an MBP::Rns fusion protein in gel mobility and DNase I footprinting assays. At each site, Rns recognizes asymmetric nucleotide sequences in two regions of the major groove and binds along one face of the DNA helix. Both binding sites are required for activation of Pcoo in vivo, because mutagenesis of either site significantly reduced the level of expression from this promoter. Thus, Rns regulates the expression of CS1 pilin genes directly, not via a regulatory cascade. Analysis of Rns-nucleotide interactions at each site suggests that binding sites for Rns and related virulence regulators are not easily identified because they do not bind palindromic or repeated sequences. A strategy to identify asymmetric binding sites is presented and applied to locate potential binding sites upstream of other genes that Rns can activate, including those encoding the CS2 and CFA/I pili of enterotoxigenic E. coli and the global regulator virB of Shigella flexneri.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel group of virulence activators within the AraC family that are not restricted to upstream binding sites.

Several regulators within the AraC family control the expression of genes known or thought to be required for virulence of bacterial pathogens. One of these, Rns, activates transcription from an unprecedented variety of binding-site locations. Although nearly all prokaryotic activators bind within a small region upstream and adjacent to the promoter that they regulate, Rns does not bind within ...

متن کامل

Repression of the inner membrane lipoprotein NlpA by Rns in enterotoxigenic Escherichia coli.

The expression of the inner membrane protein NlpA is repressed by the enterotoxigenic Escherichia coli (ETEC) virulence regulator Rns, a member of the AraC/XylS family. The Rns homologs CfaD from ETEC and AggR from enteroaggregative E. coli also repress expression of nlpA. In vitro DNase I and potassium permanganate footprinting revealed that Rns binds to a site overlapping the start codon of n...

متن کامل

A large family of anti‐activators accompanying XylS/AraC family regulatory proteins

AraC Negative Regulators (ANR) suppress virulence genes by directly down-regulating AraC/XylS members in Gram-negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibri...

متن کامل

Residues near the amino terminus of Rns are essential for positive autoregulation and DNA binding.

Most members of the AraC/XylS family contain a conserved carboxy-terminal DNA binding domain and a less conserved amino-terminal domain involved in binding small-molecule effectors and dimerization. However, there is no evidence that Rns, a regulator of enterotoxigenic Escherichia coli virulence genes, responds to an effector ligand, and in this study we found that the amino-terminal domain of ...

متن کامل

In vivo DNA-binding and oligomerization properties of the Shigella flexneri AraC-like transcriptional regulator VirF as identified by random and site-specific mutagenesis.

In Shigella flexneri expression of the plasmid-encoded virulence genes is regulated via a complex mechanism involving both environmental signals and specific transactivators. The primary regulator protein, VirF, is a member of the AraC family of transcription factors and shares with other AraC-like proteins a conserved carboxy-terminal domain thought to be important for DNA binding. Random and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 7  شماره 

صفحات  -

تاریخ انتشار 1999